If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+16x+64=123
We move all terms to the left:
x^2+16x+64-(123)=0
We add all the numbers together, and all the variables
x^2+16x-59=0
a = 1; b = 16; c = -59;
Δ = b2-4ac
Δ = 162-4·1·(-59)
Δ = 492
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{492}=\sqrt{4*123}=\sqrt{4}*\sqrt{123}=2\sqrt{123}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{123}}{2*1}=\frac{-16-2\sqrt{123}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{123}}{2*1}=\frac{-16+2\sqrt{123}}{2} $
| 6x+13=12-32x | | 5(p-1)+5=29 | | 6x+29=30×5× | | 100=20-9w | | -138.6=-7a | | X4-3x2+1=0 | | 9x+5=12+2x | | 2x+27+105=x-8 | | 2x+27=x-8 | | 4x(x+1)=(2x-5)(2x+5) | | 15=⅓(16-x) | | 3•(k+4)=45 | | y+1/3=2^3 | | 4(2x+5)-4+1=29 | | x=6/6=5 | | 2x=360÷4= | | 7^(x-5)=65 | | -1.8=-(-x+2.2)-1 | | X+5/10+8x/5=9/2 | | x-7=(3x+4)-(x-5) | | 1/2+5x/14=5/2 | | 5x+17=15x | | 8n+19=3n-8 | | 2g+8=3 | | 3(x+10)+8=10(x+1 | | w=8-3w | | 13u=4u+27 | | 7/3v=14 | | 10m-18=30 | | 9x=15/10 | | x+2/3+1/2=x+10/6 | | 5x+4x-6+5x-5+4x+3+6x-12+2x+3+5x+5=360 |